On-line Redundancy Elimination in Evolving Fuzzy Regression Models using a Fuzzy Inclusion Measure

نویسندگان

  • Edwin Lughofer
  • Eyke Hüllermeier
چکیده

This paper tackles the problem of complexity reduction in evolving fuzzy regression models of the Takagi-Sugeno type. The incremental model adaptation process used to evolve such models over time, often produces redundancies such as overlapping rule antecedents. We propose the use of a fuzzy inclusion measure in order to detect such redundancies as well as a procedure for merging rules that are sufficiently similar. Experimental studies with two high-dimensional real-world data sets provide evidence for the effectiveness of our approach; it turns out that a reduction in complexity is even accompanied by an increase in predictive accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On-line elimination of local redundancies in evolving fuzzy systems

In this paper, we examine approaches for reducing the complexity of evolving fuzzy systems (EFS) by eliminating local redundancies during training, evolving the models on on-line data streams. Thus, the complexity reduction steps should support fast incremental single-pass processing steps. In evolving fuzzy systems, such reduction steps are important due to several reasons: 1.) originally dist...

متن کامل

On-line Construction and Rule Base Simplification by Replacement in Fuzzy Systems Applied to a Wastewater Treatment Plant

Evolving Takagi-Sugeno (eTS) fuzzy models are used to build a computational model for the WasteWater Treatment Plant (WWTP) in a paper mill. The fuzzy rule base is constructed on-line from data using a recursive fuzzy clustering algorithm that develops the model structure and parameters. In order to avoid some redundancy in the fuzzy rule base mechanisms for merging membership functions and sim...

متن کامل

Flexible models with evolving structure

A type of flexible models in the form of a neural network (NN) with evolving structure is treated in the paper. We refer to models with amorphous structure as flexible models. There is a close link between different types of flexible models: fuzzy models, fuzzy NN, and general regression model. All of them are proven universal approximators and some of them (Takagi-Sugeno fuzzy model with singl...

متن کامل

On-Line Valuation of Residential Premises with Evolving Fuzzy Models

In this paper, we investigate on-line fuzzy modeling for predicting the prices of residential premises using the concept of evolving fuzzy models. These combine the aspects of incrementally updating the parameters and expanding the inner structure on demand with the concepts of uncertainty modeling in a possibilistic and linguistic manner (achieved through fuzzy sets and fuzzy rule bases). We u...

متن کامل

Fuzzy Reliability Optimization Models for Redundant Systems

In this paper, a special class of redundancy optimization problem with fuzzy random variables is presented. In this model, fuzzy random lifetimes are considered as basic parameters and the Er-expected of system lifetime is used as a major type of system performance. Then a redundancy optimization problem is formulated as a binary integer programming model. Furthermore, illustrative numerical ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011